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Space-time versus particle-hole symmetry in quantum Enskog equations
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The nonlocal scattering-in and scattering-out integrals of the Enskog equation have reversed displacements
of colliding particles reflecting that the scattering-in and -out processes are conjugated by the space and time
inversions. Generalizations of the Enskog equation to Fermi liquid systems are hindered by the need for
particle-hole symmetry which contradicts the reversed displacements. We resolve this problem with the help of
the optical theorem. It is found that space-time and particle-hole symmetry can be fulfilled simultaneously only
for the Bruckner type of internal Pauli blocking while the Feynman-Galitskii form allows only for particle-hole
symmetry but not for space-time symmetry due to a stimulated emission of bosons.
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I. INTRODUCTION

The formulation of kinetic theory of dense interactin
Fermi gases beyond the Boltzmann equation~BE! is an on-
going task. For a classical hard-sphere gas the main the
ical focus has been on the statistical correlations resultin
the Enskog equation@1–7#. In contrast to the BE, the colli
sion integral of the Enskog equation is nonlocal; it takes i
account that, when two hard spheres collide, their centers
displaced by the sum of their radii. The particle scattered
of its free trajectory faces its collision partner in front, whi
the particle scattered in the new free trajectory leaves
partner behind. This is expressed by the opposite sign
nonlocal corrections in the scattering-out and scattering
integrals.

Various generalizations of the Enskog equation tow
quantum systems@8–14# have been developed mostly in th
last two decades. They offer numerous gradient correct
to the scattering integral which describe how the nonlo
character of collisions contributes to smooth perturbatio
With a typical number of gradient corrections counted
tens, a comparison of the original Enskog equation with
generalizations was not possible.

The connection became more clear after Taste
Nacher, and Laloe@13# recognized that some of the gradie
corrections obtained can be recast into effective fields
renormalizations of the mass of particles, i.e., these grad
corrections are linked to the Landau concept of quasipa
cles. They also show that when the quasiparticle contri
tions are separated, all remaining gradient contributions
proportional to various derivatives of the scattering ph
shift. These derivatives have a natural link to the Wign
collision delay@15# which also describes the nonlocality o
collisions, although in time not in space.

A kinetic equation that combines the nonlocality in tim
and space has been derived as the quasiclassical asymp
of nonequilibrium Green’s functions@16,17#. In @16# a back-
ward resummation of the gradient expansion was introdu
by which one obtains the scattering integral in a form rec
ing the Enskog equation: the gradient corrections are
pressed as shifts of arguments in the initial~final! condition
so that one can see how long the collision lasts and how
1063-651X/2001/64~4!/046107~7!/$20.00 64 0461
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from each other the particles are at the beginning~end! of a
collision. Of course, the hard-sphere gas is a special cas
which the theory applies. It turns out that the scattering in
identical to the Enskog equation while the displacement
the scattering out does not have the expected opposite
A careful inspection shows that this sign problem appe
also within all earlier approaches@8–14#.

The sign puzzle has two serious consequences for the
plicability of the nonlocal kinetic equation. First, the Ensko
equation corresponds to classical trajectories; therefore it
be numerically studied either with a Monte Carlo simulati
or by the so called molecular dynamics. The kinetic eq
tions derived from quantum statistics cannot be studied w
these methods. Second, the Enskog equation yields the
drodynamic Chapman-Enskog expansion in a straight
ward and relatively simple manner@2# which allows one to
identify the thermodynamic properties of the system. T
symmetry between the scattering in and out is a very imp
tant prerequisite in separation of canceling and conserv
quantities. Without this symmetry, one can also derive c
servation laws@12#; however, an extensive application o
physically nontransparent identities is necessary.

In this paper we show how the natural symmetry of t
Enskog equation can be obtained within the quantum m
chanical approach to the kinetic equation. In the next sec
we introduce the problem of symmetry in a naive mann
usingad hockinetic equations for the Fermi liquid. In Sec
III we show that the nonlocal corrections for the Fermi liqu
are linked to in-medium effects and provide an identity th
allows one to achieve the Enskog form of nonlocal corr
tions. Sec. IV includes conclusions.

II. CLASSICAL VERSUS QUANTUM COLLISION

The problem with sign in the scattering out follows fro
a difference between the classical and quantum approa
to collisions. One has to recognize that a realistic collis
has a finite durationD t and to compare these two approach
in the time picture.

A. Pseudoclassical approach

The simplest model system on which one can illustr
both approaches is a homogeneous gas of particles that
©2001 The American Physical Society07-1
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VÁCLAV ŠPIČKA, KLAUS MORAWETZ, AND PAVEL LIPAVSKÝ PHYSICAL REVIEW E 64 046107
short-living molecules, i.e., the system with dominant re
nant scattering@15#. Its kinetic equation reads

] f k~ t !

]t
5E PFk1p~ t !2E P fk~ t ! f p~ t !. ~1!

The last term is the scattering out which describes that w
the probabilityP two particles form a molecule and thus
particle leaves the state of momentumk. The first term on the
right hand side corresponds to the decay of the molecule
two particles, one of them achieves momentumk. The de-
pendence of the distribution of moleculesF is also covered
by the balance equation

]FK~ t !

]t
5E P fK2p~ t ! f p~ t !2

FK~ t !

D t
. ~2!

The last term describes the decay of molecules with lifeti
D t , the first term on the right hand side their formation.

The balance equation~2! for molecules is solved by

FK~ t !5E
0

`

dt e2t/D tE P fK2p~ t2t! f p~ t2t!

'E P fK2p~ t2D t! f p~ t2D t!. ~3!

The second line is the gradient approximation which is s
ficient for our discussion since all quantum approaches to
nonlocal kinetic equation are restricted to it. Using Eq.~3! in
Eq. ~1! one gets a kinetic equation,

] f k~ t !

]t
5E P fk2q~ t2Dt ! f p1q~ t2D t!2E P fk~ t ! f p~ t !.

~4!

The scattering in has a retarded initial condition reflect
that the molecule exists fromt2D t to t. The initial condition
of the scattering out is associated with time instantt; the
corresponding molecule thus exists fromt to t1D t .

In dense Fermi systems, the final states of collisions m
be occupied and the collision is then prohibited. Let
modify kinetic equation~4! by ad hocPauli blocking factors
as introduced by Nordheim@18# and by Uehling and Uhlen
beck @19#

] f k~ t !

]t
5E P fk2q~ t2D t! f p1q~ t2D t!@12 f k~ t !#@12 f p~ t !#

2E P fk~ t ! f p~ t !@12 f k2q~ t1D t!#

3@12 f p1q~ t1D t!#. ~5!

The time arguments of the blocking factors 12 f correspond
to the ends of the time intervals during which the collisi
happens because the blocking is attributed to the final sta
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B. Quantum approach

One can see that the scattering out of Eq.~5!, obtained
within pseudoclassical assumptions, requires the block
factor at future timet1D t . The quantum approach, how
ever, does not allow one to look into the future and treats
same process differently.

In the quantum statistics, the scattering out is describe
a collision of two holes; see Fig. 1. In our simple model, tw
holes form a hole-molecule which also exists forD t . When
this hole-molecule decays into two holes, these holes ann
late particles of corresponding momenta. Accordingly,
scattering out is described by the hole-hole interaction dur
the time interval fromt2D t to t. An ad hockinetic equation
corresponding to the quantum picture thus reads

] f k~ t !

]t
5E P fk2q~ t2D t! f p1q~ t2D t!@12 f k~ t !#@12 f p~ t !#

2E P fk~ t ! f p~ t !@12 f k2q~ t2D t!#

3@12 f p1q~ t2D t!#. ~6!

Note that Eq.~6! differs from its pseudoclassical counterpa
~5! by the sign of the nonlocal correction. This is the tim
modification of the sign problem found for the quantum ge
eralizations of the Enskog equation.

The abovead hoc implementations, Eqs.~5! and ~6!, of
the nonlocal corrections reveal a paradox: The space-t
symmetry and the particle-hole symmetry lead to contrad
tory results. Indeed, Eqs.~5! and ~6! are different and for a
general scattering rateP they correspond to different thermo
dynamic properties of the system.

III. IN-MEDIUM EFFECTS

To resolve the paradox of symmetries, one has to t
into account that the scattering rateP itself is a function of
the occupation,P@ f #. This dependence represents an inter
Pauli blocking of states during collisions, which is called t
in-medium effect in nuclear physics. In a heuristic mann
one can indicate what kind of internal Pauli blocking is co
sistent with the Uehling-Uhlenbeck blocking of final state

Since the scattering process lasts over the time inte

FIG. 1. Scattering out for the classical and quantum concept
collisions.
7-2
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SPACE-TIME VERSUS PARTICLE-HOLE SYMMETRY IN . . . PHYSICAL REVIEW E64 046107
from t2D t to t, the mean value ofP equals its value at the
center timeP5P(t21/2D t); see @16,17#. Comparing Eqs.
~5! and~6! we find that the two symmetries are consisten

E PS t2
1

2
D tD f k~ t ! f p~ t !@12 f k2q~ t2D t!#

3@12 f p1q~ t2D t!#

5E PS t1
1

2
D tD f k~ t ! f p~ t !@12 f k2q~ t1D t!#

3@12 f p1q~ t1D t!#. ~7!

Within the gradient approximation this condition reads

E P fkf p~12 f k2q!~12 f k2q!

3S d ln P

dt
12

d

dt
ln@~12 f k2q!~12 f p1q!# D50.

~8!

From this equation we see that the space-time and part
hole symmetries are consistent when the time dependen
the in-medium effect is given by Pauli blocking of Bruckn
type, P@(12 f )(12 f )#. According to this type of Paul
blocking, the internal states of the short-living molecule ex
only in the unoccupied phase space.

A. Causality

The retarded scattering-out integral of Enskog type~5! is
peculiar from the point of view of the causality. Since t
scattering-out process ends at timet1D t , the scattered par
ticles have to have an available final state at this time
other words, to determine whether the collision is allowed
the Pauli exclusion principle, one has to look into the futu
In this way, the Pauli blocking seems to create an antica
step.

In general, the causality of the perturbative expansion
flects the tendency of a many-body system to reach its e
librium state. An anticausal description of the whole syst
is thus impossible because of the dissipative processes.
cordingly, we will take the causal expansion and the sub
quent particle-hole symmetry represented by Eq.~6! as a
well justified starting point.

The Enskog-type kinetic equation with the space-ti
symmetry of the scattering integral applies only under
strictive assumptions. The first assumption is that individ
binary collisions are treated as if they were isolated from
rest of the system. The dynamics of the binary collision
then reversible and the causal and anticausal expansion
the space-time scale of a single collision are equivalent. T
assumption is met in all approaches to the kinetic equa
except for the studies of the so called collisional broaden
The second assumption is that the internal Pauli blocking
collisions is of the Bruckner type. This point is discuss
below.
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All methods of quantum statistics enforce the causa
using backward propagation of holes instead of the forw
propagation of particles into the future. To link the spac
time and particle-hole symmetries, we will use the optic
theorem which allows us to reformulate the causal inter
propagation during the collision into the anticausal one.

In the algebraic notation of the double-time Green fun
tions @20–22#, the causality is reflected by the order of o
erators retarded-correlation-advanced. The time cuts of
retarded and advanced operators restrict all time integra
the past. The anticausal expansion is then characterize
the reversed order advanced-correlation-retarded. With
introducing unnecessary details, we can link the causal
anticausal expansions using the identity for the scatterinT
matrix,

TRATA5TAATR. ~9!

This identity represents two forms of the optical theore
Im T5TRATA and ImT5TAATR. Their derivations are in
Appendix A.

The retarded/advancedT matrix TR,A describes an indi-
vidual binary process@23#. The two-particle spectral function
A includes the internal Pauli blocking. In this paper we d
cuss two particular approximations of the internal Pa
blocking, the Bruckner approximation,

AB~ t1 ,t2 ,k,p!'~12 f k!~12 f p!e2 i (ek1ep)(t12t2), ~10!

and the Galitskii-Feynman approximation,

AGF~ t1 ,t2 ,k,p!'~12 f k2 f p!e2 i (ek1ep)(t12t2). ~11!

For both approximations we will derive kinetic equatio
with the space-time symmetry of the nonlocal scattering
tegral. We will see that the kinetic equation obtained with
the Bruckner approximation has the pseudoclassical fo
~5!; therefore it can be treated with numerical tools based
the classical concept of trajectories. In contrast, the kin
equation within the Galitskii-Feynman approximation i
cludes a nontrivial term due to the stimulated emission
bosons which essentially complicates its numerical tre
ment.

B. Collision integral from Green functions

Let us first recall how the nonlocal scattering integra
relate to more general relations of quantum statistics.
demonstrate it on the method of nonequilibrium Green fu
tions. The scattering-in and -out integrals result from an
commutators$.,.% of the Kadanoff and Baym~KB! equation
@24–26#

$G.,S,%2$G,,S.%5$G.,G.+TR~G,G,!TA%

2$G,,G,+TR~G.G.!TA%.

~12!

Here,G, andG. are particle and hole correlation function
the + denotes thatG.,, closes one loop of the two-particl
function on its right hand side. TheT matrices and pairs o
7-3
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single-particle correlation functions (GG) obey standard
two-particle operator products.

With respect to our treatment, it is sufficient to know th
the particle correlation functions are proportional to the q
siparticle distributionG,(t1 ,t2 ,k)' f ke

2 i ek(t12t2); therefore
they represent the initial states of collisions. Similarly, t
hole correlation functions are proportional to the hole dis
bution G.(t1 ,t2 ,k)'(12 f k)e

2 i ek(t12t2); therefore they de-
scribe the final states including their Pauli blocking.

According to the initial and final states, the first and se
ond terms of the right hand side of Eq.~12! can be inter-
preted as the scattering-in and scattering-out integrals,
spectively. Note that both scattering integrals are cau
having the order retarded-correlation-advanced of the t
particle functions. At the same time, the scattering-in a
scattering-out integrals are linked via the particle-hole sy
metry. One can see that upon the interchange of particles
holes,.↔,, the first term changes to the second one a
vice versa. Equation~12! is thus a precursor of Eq.~6!.

Using the~extended! quasiparticle and quasiclassical a
proximations and keeping gradients in the scattering inte
of the KB equation, one obtains a nonlocal kinetic equat
@16#,

] f 1

]t
1

]e1

]k

] f 1

]r
2

]e1

]r

] f 1

]k
5E P2 f 3

2 f 4
2~12 f 1!~12 f 2

2!

2E P2~12 f 3
2!~12 f 4

2! f 1f 2
2 .

~13!

Algebraic operations needed to arrive at Eq.~13! are rather
extensive due to numerous gradient contributions to the s
tering integrals. These gradient contributions are expres
via shifts of arguments as

f 1[ f ~k,r ,t !,

f 2
2[ f ~p,r 2D2 ,t !,

f 3
2[ f ~k2q2DK ,r 2D3 ,t2D t!,

f 4
2[ f ~p1q2DK ,r 2D4 ,t2D t!. ~14!

The differential cross section is proportional to the square
the amplitude of theT matrix

P25
dp

~2p!3

dq

~2p!32pd~e11e2
22e3

22e4
222DE!

3UTS e11e2
22DE,k2

DK

2
,p2

DK

2
,q,r 2D r ,t2

D t

2 D U2

.

~15!

The arguments of the quasiparticle energiese are identical
with Eq. ~14!. All nonlocal corrections are given by deriva
tives of the scattering phase shift f
5Im ln TR(V,k,p,q,t,r ) @16#,
04610
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D t5
]f

]V
, DE52

1

2

]f

]t
, DK5

1

2

]f

]r
, D352

]f

]k
,

D25
]f

]p
2

]f

]q
2

]f

]k
, D452

]f

]k
2

]f

]q
. ~16!

A detailed understanding of these numerous correction
the scattering integral of the Boltzmann equation is not
sential for our discussion. It is important to realize that t
collision is of finite durationD t . During this time particles
can gain momentum and energyDK,E due to the medium
effect on the collision. Three displacementsD2,3,4 correspond
to initial and final positions of two colliding particles/holes

The quasiparticle kinetic equation~13! covers three ingre-
dients of the kinetic theory. First, the scattering integral
cludes the medium effect on the scattering rate. Second
scattering integrals are nonlocal in space and time. Third,
quasiparticle energy represents the momentum depen
mean field. With respect to the included nonlocal corre
tions, it is important that the quasiparticle energy is defin
from the pole of the propagator, not from the variation of t
energy density. This difference has been discussed in@27#.
The scattering out of Eq.~13! is the particle-hole mirror of
the scattering in; accordingly it is not the space-time mir
found in the Enskog equation.

C. Anticausal collision integral

Our aim is to rearrange~13! so that it will include the
scattering out as the space-time mirror of the scattering
briefly, it will be the symmetry assumed by Enskog. It
advantageous to make this step already on the level of G
functions. Accordingly, we rearrange Eq.~12! so that its
scattering-out part is written in terms of the anticausal
pansion.

Further progress depends on the approximation of thT
matrix. Let us first approximate theT matrix by Bruckner’s
reaction matrix for which the two-particle spectral functio
is AB5(G.G.). Formula~10! is the quasiparticle approxi
mation of (G.G.). Using identity~9! in the second term of
Eq. ~12! one finds

$G.,S,%2$G,,S.%5$G.,G.+TR~G,G,!TA%

2$G,,G,+TA~G.G.!TR%.

~17!

Expression~17! has the desired explicit space-time sym
metry in contrast to the explicit particle-hole symmetry
Eq. ~12!. To see it in detail, we use Eq.~17! in the KB
equation and employ the same steps as above~quasiclassical
and quasiparticle approximations! to arrive at

] f 1

]t
1

]e1

]k

] f 1

]r
2

]e1

]r

] f 1

]k
5E P2 f 3

2 f 4
2~12 f 1!~12 f 2

2!

2E P1~12 f 3
1!~12 f 4

1! f 1f 2
1 .

~18!
7-4
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SPACE-TIME VERSUS PARTICLE-HOLE SYMMETRY IN . . . PHYSICAL REVIEW E64 046107
The shifts in the scattering out have opposite signs,

f 2
1[ f ~p,r 1D2 ,t !,

f 3
1[ f ~k2q1DK ,r 1D3 ,t1D t!,

f 4
1[ f ~p1q1DK ,r 1D4 ,t1D t!, ~19!

and similarly other ingredients denoted by superscript1.
It can be indicated why the change of the causal pict

into the anticausal one results in the flipped signs of all n
local corrections. First, one can use a formal argument. W
ing the T matrices as products of the amplitude and
phase,TR5uTueif and TA5uTue2 if, one can see that th
interchange of retarded and advancedT matrices merely flips
the sign of the phase shiftf. As all D ’s depend linearly on
f, the gradient contributions of the anticausal scattering
have signs reversed with respect to the causal scatterin
Second, there is a physical reason for the formal argum
above. The amplitude of theT matrix represents a filte
which selects the probability of individual channels. The fa
tor of the phase shifteif is a unitary transformation which
applies to individual components of the wave function in
manner that parallels the evolution operator. Products
eif

•••e2 if correspond to transformation from one place
another, ande2 if

•••eif to the backward one.
For the system of classical hard spheres, the kinetic eq

tion ~18! reduces to the Enskog equation in the second o
virial approximation. This limit includes three simplifica
tions. First, the Pauli blocking factors vanish in the classi
limit, 12 f→1. Second, the quasiparticle energy reduces
the kinetic energy of free particles,e1→k2/2m. For this limit
it is important that the quasiparticle energy is defined fr
the pole of the propagator. Landau’s definition ofe based on
the variation of the energy density yields a nontrivial qua
particle energy even for the classical gas of hard sphe
Third, from the hard-sphere scattering phase shift,f→p
2uquD, whereD is the diameter of colliding particles, on
finds the expected values of theD ’s. The collision delay is
zero,D t→0, there is no energy/momentum gain,DE,K→0,
during collision, and none of the particles move in spa
D350 andD45D2. The displacement of particles at the i
stant of collision isD2,45D.

To summarize this section, we have shown that the sp
time and the particle-hole symmetric forms of the nonlo
Boltzmann equation are equivalent if the scattering rate
cludes the in-medium effect on the level of the Bruckn
reaction matrix.

D. Comments on the Galitskii-FeynmanT matrix

The Bruckner approximation of the scattering rate w
quite common in earlier microscopic studies of heavy
reactions. Recently, most studies prefer the Galits
Feynman approximation@25,26# for which the Pauli block-
ing of the internal states is controlled by the two-partic
spectral function,AGF5(G.G.)2(G,G,). Formula~11!
is the quasiparticle approximation ofAGF .
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As mentioned, the Galitskii-Feynman approximation i
cludes processes that go beyond the scope of naive kin
equations. While terms proportional to (G.G.) exclude
correlation in the occupied phase space, terms proportio
to (G,G,) describe stimulated correlation by already exi
ing pairs. These processes lead to the superconducting p
transition at low temperatures; therefore the system can
be treated as a sum of single-particle excitations on
Fermi liquid ground state. Kinetic equations~5! and ~6! are
based on the idea of the simple Fermi liquid and do
include the stimulated processes.

Even with the stimulated processes included, the kine
equation can be rearranged into the space-time symm
form. Again, we make the rearrangement on the level of
Green functions. The scattering integrals~12! can be written
so that their final states are consistent with the Galits
Feynman spectral function,

$G.,S,%2$G,,S.%5$G.,G.+TR~G,G,!TA%

2$G,,G,+TR~G,G,!TA%

2$G,,G,+TR
„~G.G.!

2~G,G,!…TA%. ~20!

The last term includes the Galitskii-Feynman two-partic
spectral function and can be converted into the anticau
picture. The causal/anticausal forms of the resulting kine
equation read,

] f 1

]t
1

]e1

]k

] f 1

]r
2

]e1

]r

] f 1

]k
5E P2 f 3

2 f 4
2~12 f 12 f 2

2!

2E P7~12 f 3
72 f 4

7! f 1f 2
7 .

~21!

The particle-hole symmetric form~with superscripts2)
can be recast into Eq.~6! by a subtraction of stimulated
processes, proportional tof 3

2 f 4
2 f 1f 2

2 on both sides. In con-
trast, the space-time symmetric form~with superscripts1)
cannot be recast into the intuitive form~5! due to gradient
contributions of stimulated processes, proportional
f 3

1 f 4
1 f 1f 2

1 . It is a pity, since the space-time symmetry
obligatory for numerical treatments based on Monte Ca
simulations. Equation~21! is not suited for the Monte Carlo
treatment because its scattering integrals can change
sign, losing their probabilistic interpretation. The Galitsk
Feynman type of kinetic equation~21! thus provides a more
precise description of the system, but at the cost of a ser
increase in difficulties of its numerical treatment. Because
these numerical problems, we discuss implementation
symmetries only for the Bruckner approximation. A com
parison between the Bruckner and Galitskii-Feynman
proximations can be found in@28# showing that the latter can
describe the onset of pairing in contrast to the Bruckner
proximation. About the range of validity of the Bruckne
approximation, see@29# and citations therein.
7-5
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E. Implementation of the symmetry in simulations

The equivalency of both forms of the kinetic equatio
~13! and ~18!, offers an important simplification of the nu
merical treatment. Expanding the scattering out to the lin
terms, one finds that amplitudes of anticausal and causal
rections are equal while the signs are opposite. Since b
forms are equivalent, the sum of gradient corrections to
scattering out vanishes.

For highly inhomogeneous and/or fast evolving system
like nuclear matter in a heavy ion reaction, the Monte Ca
simulation procedure spends a majority of the CPU ti
searching when and where a collision should be genera
Due to cancellation of gradient corrections to the scatteri
out integral, this part of the simulation procedure remains
same as in the local approximation. All nonlocal correctio
are included only after the collision event is selected. T
scheme was used in@30#.

IV. CONCLUSIONS

We have shown that the space-time symmetry of the n
local scattering integral becomes nontrivial if the Pauli e
clusion principle has to be accounted for. Within t
pseudoclassical form of the Pauli blocking represented
the hole distributions as introduced by Nordheim and U
hling and Uhlenbeck, the space-time symmetry and
particle-hole symmetry are consistent only if the scatter
cross section includes in-medium effects of Bruckner ty
Due to their classical form, these nonlocal corrections
easily implemented into the Monte Carlo simulations.

The more sophisticated approximation of Galitskii a
Feynman includes the stimulated creation of the collid
pair. This process escapes the pseudoclassical interpret
of the scattering process which makes its implementa
within the traditional Monte Carlo simulation schemes im
possible.
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APPENDIX: OPTICAL THEOREM

Identity ~9! represents two alternative expressions of
anti-Hermitian part of theT matrix,

M5Im T5 i ~TR2TA!. ~A1!

We derive this identity known as the optical theorem fro
the ladder approximation, which is the approximation used
the scattering integrals of the discussed kinetic equation

The ladder approximation in the differential form reads

TR,A
21 5V2G R,A. ~A2!

Here,G R,A are the two-particle propagators given by the tim
cut of the spectral functionA5 i (G R2G A). From Eq.~A2!
follows

i ~TR
212TA

21!52A. ~A3!

Multiplying Eq. ~A1! by TR
21 one finds

TR
21M5 i 2 iTR

21TA . ~A4!

Finally, we expressTR
21 from Eq. ~A3!,

TR
215TA

211 iA, ~A5!

so that Eq.~A4! turns into the familiar optical theorem

M5TRATA. ~A6!

To obtain a less familiar anticausal form of the optic
theorem, we multiply Eq.~A1! by TR

21 from the right hand
side,

MTR
215 i 2 iTATR

21 . ~A7!

Now we substitute Eq.~A5! into Eq. ~A7! which yields

M5TAATR. ~A8!

Comparing Eq.~A6! with Eq. ~A8! one obtains identity~9!.
ys.
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